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Abstract 

The implications of the lack of continuity in space-time brought about by every observation 
process are discussed in connection with the need for finding new observables based on 
realisable measuring processes. Displacements in a cellular space are defined and their 
rules of combination are formulated. Rotations in a cellular space are defined in terms of a 
set of radius displacements and in terms of a set of instructions which tell how these radii 
should be used. 

1. Introduction 

In a previous paper  (Cole, 1971a) it was pointed out that whenever we use 
a space-time description in the observation and tabulation of physical 
processes, the space-time always has a cellular structure brought about by 
the imperfect resolving power of  the measuring apparatus we use. I t  was 
also suggested that it takes an infinite amount  of  energy (or cost) in order to 
be able to refine the apparatus sufficiently in order to be able to obtain a 
description of events within a continuous space-time structure. Thus the 
space-time which we use is always cellular, but the exact cellular structure 
is observer-dependent. Consistent with the amount  of  energy an observer 
has for refining his apparatus he is able to use any cellular structure he 
pleases, not necessarily a simple uniform cubic lattice structure, although in 
practice this is one of the easiest to use. Many attempts (Das, 1960; Bopp, 
1967; Cole, 1970, 1971b) at forming theories based on a cellular space-time 
structure then involve the introduction of  a set of  fundamental parameters 
into existing continuous equations, but in the case of  a simple rectangular 
lattice these parameters are not to be regarded as the lengths of  the cell 
edges because the usual idea of  length is not defined in a cellular space. 
These parameters must be regarded as observer-dependent quantities which 
enable us formally to make the equations discrete. In the same way if the 
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existing equations contain concepts which are not defined in a cellular 
space-time scheme, for example momentum and angular momentum, then 
it would be inconsistent to make these equations discrete while at the same 
time retaining these concepts. As Bohm et al. (1970) have pointed out, it is 
not sufficient to merely make our equations discrete, we must also develop 
new observable quantities to replace those which were developed specifically 
for the continuum. 

Since every method of observation imposes its own cellular structure on 
space-time then there can be no answer to the question of whether or not 
there is really continuity beneath the cellular structure because no obser- 
vation process will enable us to see or demonstrate this continuity. Of course 
in our theories we are at liberty to use a set of four continuous coordinates 
(x~,..., x4) to represent space-time, but it must then be realised that these 
quantities are not observable, and are merely devices which may make our 
theories easier to use. However, the calculations involved in many of our 
theories, whether they are eigenvalue calculations (Bassett, 1968) or the 
gravitational n-body problem (Miller & Prendergast, 1968) now require the 
use of a computer, and immediately this happens we lose any benefits which 
the use of  continuity might have given. It is then very wasteful of time and 
effort to retain the device of continuity in our equations, only to have to 
make those equations discrete in order to be able to solve them. 

Thus we require new equations for the description and prediction of 
observable quantities, but first we must decide what these quantities really 
are. We are no longer allowed to talk of the observables as things in 
themselves--concepts which exist whether or not we make measurements, 
but they must be defined by the way in which they are measured and are 
therefore related directly to each individual measuring process. In this way, 
no meaning can be attached to the statement that thereare  many different 
ways of measuring the same observable, but rather each of these processes 
defines its own observable. An attempt to show how the idea of distance can 
be modified and how eigenvalues can be interpreted in the light of  this idea 
has been given by Cole (1971a). 

At this stage it is convenient to make a few basic definitions. Space-time 
will consist of a basic cell structure, the cells of which we will assume do not 
overlap. There is nothing to stop the observer using a set of overlapping 
cells so that in describing the position of an event he may use one of several 
cells, but to make his description less complicated he will not do this. The 
cells may be put into one-one correspondence with the integers, and the 
integers m, n, p, q, etc. will be used to label the cells of the basic structure. 
The set of cells in this basic structure will be denoted by S. The subsets of S, 
denoted by M, N, P, (2, etc., will define regions denoted by M, N, P and 0,  
etc., which are themselves cells in some coarser cellular structure. So in 
particular for a given cell n, {n--}-- n. The set of all possible regions ~r  formed 
from the basic structure will be denoted by ~q~, so that S c 5P. Furthermore, 
since actual experiments always take place in finite regions (Antoine & 
Gleit, 1971), both of  these sets will contain a finite number of elements. 
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Because of  the imperfect resolving power of the apparatus used in making 
observations, an event can be located by specifying in which cell it occurs, 
but it is impossible to locate an event more precisely within the cell. The 
event may have such an extension that it takes more than one cell to 
describe its location and in that case it will be said to be located in some 
element of &o. In this way regions of 5,0 are treated in exactly the same way 
as the basic cells of  S from which they are composed, and there is no 
fundamental distinction between cell and region, as there is between point 
and plane in a continuous geometry. 

As pointed out earlier the idea of distance which was developed in a 
continuous space is not defined in a cellular space. A modification of this 
concept based on a real measuring process has been suggested by Cole 
(1971a). These measurements are made using a measuring rod r which is 
laid to coincide with the regions 3~r and _N of 5 ~ between which the 'distance' 
is to be measured. The rod r will itself have a cellular structure dictated by 
the amount of energy the observer has available for refining it, and the 
observer then tabulates the pairs of cells of the rod which coincide with the 
regions 3~r and N. From each pair of these cells a single value is then extracted 
and the set of these single values for the given regions J~r and 2V, denoted by 
d,(M, N) and called the distance set, is then taken to represent the 'distance' 
between the regions. The values of the dements for a given pair 3~t and 
will then depend on the cellular structure of r, that is, on the observer, and 
again these sets will have a finite number of  elements because of the finite 
extension of the rod. For  example, in the special case in which the rod has a 
uniform cubic structure specified by the parameter ~ the distance set could 
be taken to have the form 

d,(~I, ~) = {K~:K integer, Kl(3~r, ~ )  < K < K2(3~r, 2V)) 

As the cellular structure is refined further to the ideal continuous limit we 
should expect the elements of dr(3~r, N) to all converge to one value which 
will be the usual distance between the two points which are the limits of  the 
subdivisions of the regions M and N-. 

In general we will consider only those d-set constructions which give the 
following properties to the d-sets. For  all L, 3~ r and N in ~9 ~ 

(a) all elements of dr(L, FI) are real, non-negative and distinct; 

(b) dr(L,M) = dr(~r,L); 

(c) O~d,(L,L); 
(d) min dr(L, ~)  < max dr(L, JVI) + max d,(M, PT); 

(e) d,(L, f f )  = U U dr(l, m). 
I e L  m e M  

The problem of transformations between the cellular space-times of two 
different observers was also tackled by Cole (1971a). It was found that the 
transformation is not as exact as in the continuous case, with at best a cell 
in one space being associated with a set of cells in the other. These sets 
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depend on the information passed between the observers concerning their 
placements of common events within their frameworks. The transformation 
becomes more exact, in the sense that these sets become smaller, as more 
information of  this type is exchanged. 

A similar problem arises when one comes to consider the idea of  rotation 
in a cellular space, either about a region or about an axis. Of course, one 
first has to define an axis in a cellular space. To crystallise the problem 
consider the following situation. A rod is thrown ~ times into a cellular 
space and the positions of the regions of the rod which suitably define its 
ends are noted for each throw. It is found that the ends fall into the pairs of 
regions (~rb 32 0, (~r2,322) . . . .  , (37I~, 32~). If  the rod is now placed with one 
end in a region _M, what are the possible regions into which the other end 
falls ? The answer is that these regions 2V are such that 

32) = 32,) 
i = l  

for all measuring rods r. The set of all possible regions 32 for this to be so 
then defines a shell centred on the region 3~. As detailed in Section 3 this 
example points to the possibility of a general classification of different types 
of  rotation in a cellular space. 

The remainder of  the paper is concerned with classification rather than 
prediction because before we can write down equations of motion we must 
derive physically realisable concepts for the equations to handle. The next 
section deals with displacements in a cellular space and Section 3 deals with 
the classification of  the possible rotations allowable in such a space. 

2. Displacements in a Cellular Space 

For  any two regions ~r  and 32 in 5 a we can define a quantity called a 
m _ 

cellor and denoted by M N  which can be thought of as representing a 
displacement from ~r  into 37, analogous to the notion of  a vector in 
continuous theory. The magnitude of AI~, denoted by IAf~lr, is defined as 
the observer-dependent distance set between ASr and N: 

IAI_N[r = d~(A~, 32) (2.1) 

Thus the magnitude of a cellor depends on the measuring rod used in the 
measurement. In what follows we will consider only one measuring rod 
unless otherwise stated so that the suffix r will be removed. 

The conditions (b), (c) and (e) of Section 1 then give 

]A71321 = [?2AI[ (2.2) 

0 ~ ILL[ for all L in 5 a (2.3) 

IA~r32] = U U ]mn I (2.4) 
m E M  n ~ N  
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Certain cellors can be combined to form a third cellor, and addition of 
cellors is defined in the sense that for all L, 3~t and ~ in 60, 

L ~ =  L_~ + A-~rN- 

and LFI + PQ is defined if and only if M -= P. Clearly addition is defined 
only between certain pairs of cellors and when it is defined the operation is 
not always commutative. But it is associative, for 

L M  + ( ; I N  + NP)  = L P  = ( L M  + ~IR)  + NP 

Condition (d) of Section 1 then gives 

min [ L M +  2fiN[ < max [L~r[ + max 12ff2V[ (2.5) 

In particular, for all L and 2~r in 6 p, 

LL+L~=LFr 
L ~  + ~ r ~  = L~r (2.6) 

so that LL and M M  respectively can be called the left and right zero cellors 
of  L~r. Also, 

L L  + L L  = L L  

and (2.3) shows that the zero element is contained in the magnitude of every 
zero cellor. However, if the magnitude of a cellor contains zero, it is not 
necessarily a zero cellor. 

In fact, let ~f = {2~rN:_~r and N ~ 6e}. Then it can be easily checked that 
c~ is a Brandt groupoid. [For the properties of a Brandt groupoid see 
Jacobson (1943.)] 

As a further possible classification of these displacements we can say that 
2~2~ is an expansion cellor if M c N, and/~0 is a contraction cellor i fP  ~ Q. 
These constructions could possibly be of use when describing the expansions 
and contractions of  gases. 

Clearly in a general cellular structure the concept of parallel displacement 
does not exist. The idea exists only when the structure possesses some degree 
of regularity, and only then can we talk of two non-coincident cellors being 
'equal'. In this paper we will deal only with the properties of a general 
cellular space so that all cellors will be considered as localised, and the idea 
of regularity in the structure will not be pursued. 

3. Rotations 

In order to discuss rotations in a cellular space it is necessary to look at 
the nature of the steps involved when considering rotations in a continuous 
space, and then to generalise each of these steps. In continuous space we 
start with two points 0 and P and then when we talk of a rotation of  the 
radius OP about 0 we mean that the line OP is moved into OP' where 
]OP'[ = [OP[. Thus in talking of a rotation of  OP about 0 we first fix the 
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radius I OPt and then use the instruction 'rotate to OP' where OP' and OP 
have the same length'. The set of  all possible points P '  such that this is so 
then forms a shell about O of radius lOP[. 

The situation in a cellular space is clearly more complicated. I f  we are to 
talk about the rotation of a cellor 3777 about 3?, ending up with a shell of 
regions, then because I~rlVI contains a number of  values rather than one 
single value there are many arbitrary instructions which we may impose on 
the rotation process. For  example, we may demand that ~QNis rotated into 
3?dV' where l~r~ ' l  = [~lV I with the corresponding shell composed of  all 
possible regions ~V' such that this is so, but clearly in a general cellular space 
this shell may be empty. Again we may demand that 3?iV is rotated into 
37N' where ])fffN[ N [~r~'[ ~ ~ ,  and this instruction then defines another 
shell. As an added complication the shell may eventually depend on a set of  
radii as is illustrated by the example of the rod in Section l. Thus the shells 
of the theory will depend firstly on a set of radii and secondly on how these 
radii are to be used. In order that this idea of rotation corresponds to that 
which is already used in continuous theory, we will require that all shells 
defined using these separate instructions tend to the shell we get in a 
continuous theory when the appropriate limit is taken. This is achieved by 
imposing certain restrictions on the instructions used in forming the shells. 

A. The radius proposition. The basic instruction will be introduced 
through the radius proposition, denoted by F~(x;al . . . . .  a~), which is a 
proposition linking any set ofcellors x, a~ . . . . .  a~ in cg (c~ = 1,2 . . . .  ) such that 

RPI. F~(x;x . . . .  , x) is true for all x in q~, for all a >~ l ; 

RPII. F~(x;al,.. . ,a~)-->]xl, t3 [adr r  ~ ( i - -1  . . . .  ,~) for all 
measuring rods r. 

Let q~(x;a~ . . . . .  a~) be the proposition that Ix[ C/lad r ~ ( i=  1 , . . . ,~) for  
all r. Then tb~ is itself a radius proposition and for all radius propositions 
F~,F. --> ~ .  

Special cases can be outlined as follows. We say that F~ is scalar if  
F~(x;al . . . . .  a~) = F~(Ixl;lal[ . . . . .  la~ 1), that is, the proposition F~ links only 
the distance sets of the cellors involved. We say that F~ is factorisable if 
F~(x;al . . . .  ,a~) +-+ Fi(x;aO and Fl(x;a2) a n d . . .  Fl(X;a~). 

Now for each 37 ~ 5 ~ define 

RM(F~;a~ . . . . .  a~) --- {N-:F~(3?N'; a~ . . . . .  a~) is true} (3.1) 

called the (F~;a~ . . . .  , a~)-shell centred on 3?. In this way the shells depend 
not only on the set of radii but also on the instruction contained in the 
statement of F~. The following results can then be easily proved: 

(a) I f  F~ is factorisable then 

R~(F~; al . . . . .  a~,) = ~ R~(FI ; a,) (3.2) 
i= l  
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and so 

RM(F~;a l , . . . , a , )  ~ R~t(Fo;al . . . . .  a0) forfl>~ 

(b) If  F,  is scalar and R- ~ R~(F,;  al . . . . .  a,) then )ff E Rs(F~; al . . . . .  a~). 
This shows that if ~t ies  on the scalar shell about )ff then )fflies on the 
corresponding shell about N. 

(c) If  F,  and G~ are radius propositions such that G, -> F,  then for all 

RM(G~, ; a l , . . . ,  a,) c Rrt(F~,; al . . . . .  a~,) 

In particular for all radius propositions G~, 

R~(G~,; al . . . . .  a~) c R~t(q9 ; al . . . . .  a~) 

(d) For all _~r and )V in 5 :  and all radius propositions F~, 

~ R~(F~,; MN, M N , . . . ,  )ffIN) (3.3) 

We can now illustrate this with some examples of different forms for 
F~,(x;a~ ..... a~,). Each example will be scalar and specified by a superscript 
on F,,. 

1. F~, x = ~ : l x [  f3 lai[ ~ ~ ( i=  1 . . . . .  ~) for all measuring rods. This is 
faetorisable. 

2. F 2:lxl = ,n  la, lfor all measuring rods. The answer to the question 

posed in Section 1 concerning the end of the rod is that the end could 
be in any element of R~(F~ z; Ml N1,..., M~, N~). In fact the ~r~ ~ must 
be such that 

( i  = 1 . . . . .  ~) 
The result 

R~(Fo z ; 19I 11~, . . . . .  M O NO) D R~(Fo2; M1 Ul . . . . .  )9I~ ~ )  
for /3~>.  

means that as more results )~r+~ N~+~,..., )1~ O )~O of initial throws of 
the rod are tabulated then more information is available for predicting 
the possible regions into which the end of the rod falls. This extra 
information enables us to predict smaller regions for the end of the 
rod and these smaller regions are then included in the R~ set to make 
it larger. 

3. F~3:txl c f~ la~l for all measuring rods. This is factorisable. 
i=1 

4 .  F=4: Ixl = ~ la~l for all measuring rods. 
i=1 

5. F=S:[xl = l a~[ (i = 1 . . . . .  =) for all measuring rods. This is factorisable. 

6. F~ 6 :lxl = la~[ (i = 1,..., , )  for all measuring rods. This is factorisable, 
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Note that from these examples the sequences F~ 6 -+ F~ 5 ~ F ,  2 -+ F~ ~ 
and F~ 6 -+F~ 4 -+F~ 3 ~ F ~  1 emerge. This suggests the possibility of 
defining general sequences of radius propositions with ~ as limit. This idea 
will not be taken further in this paper. 

B. Analysis ofF1. For all a and b in c~, define the proposition F~ x by 

FiX(b; a) - F, (a;b)  (3.4) 

Then special cases may be classified in the following way: We say that FI is 
symmetric if for all a and b in c~ 

FiX(a; b) = r , (a;  b) (3.5) 

We say that F~ is transitive if for all a, b and e in qY 

F~(a;b) and F~(b; c) -+ F~(a; e) (3.6) 

It can then be shown that (i) if F~ is a radius proposition then so is F~ x, 
(ii) if FI is a transitive radius proposition then so is FI ~, and (iii) (F~) x = FI. 

For example, ~ is symmetric, F~ z -- F~ 5 is transitive, F~ 3 is transitive, 
Ft 4 -- F16 is symmetric and transitive, and (F12) ~ -- Fl 3. 

The following general results can then be easily proved. For all radius 
propositions F~ and all 2ff and fi/in SP, 

(a) 0 e Rz~(F1 ;/ffKr) if and only if S E R~t(F~; MO_.). 
(b) If  FI is transitive and ~ ~ R~t(FI ; 19IN), then 

RI]71(FI ; J~f O) c R~I(FI ; j~jV) 

RM(FlX; ]VlO) = R~(F~X; f f l~ )  

(c) In particular if/71 is transitive and symmetric and 0 ~ Rrt(Fl ; 2~I.N), 
then 

R~t(F, ; IQ O.) = R~t(F, ; ~ffl~) 

Clearly when considering rotations within a continuous space we deal with 
only one radius proposition equivalent to F~ 6 which is both symmetric and 
transitive, and so if a point P~ lies on the shell through a point/'2 about some 
point O then the two shells through P~ and Pz about O will coincide. This 
is result (c), but this result does not hold for every rotation in a cellular 
space. 

C. Rotations about axes. Perpendicularity. Any cellor 2~r 1 )~r2 in cg can be 
taken to represent an axis in a cellular space, so that an axis is specified by 
naming in order its two end regions. A circle about this axis can be defined 
as the intersection of two shells which are centred on Jl~ and k~rz. We say 
that 

C~,g2(V~; a~, . . ., a~la ~; b, . . . . .  b~) 
-- R~t,(F~;a~ . . . . .  a~) N Rg2(G~;ba, . . . ,b~)  (3.7) 

defines an (F~; al . . . . .  a~[G~; bl . . . .  , bt~)-circle about M~/1r z. 
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We then have the following results which follow directly from (3.7), 
(3.2) and (3.3). For all 3~q and 3~r2 in S~' and all al ..... bo in c~, 

(a) C~1~12(F,,; al . . . . .  a~ ]Gi~;bl . . . . .  b[~) = Crtz~tl(Go;bl . . . .  , b~lF~;a 1 . . . . .  
a~,). 

(b) If F~ is factorisable, then 

CMlrt2(F~,;ai . . . . .  a~,lG~;bl . . . .  ,b~)= ~ Crt,~t~(Fl;a, lG~;b I . . . . .  b~) 
/=1 

and 

C~tlrt~(Fo,; al . . . . .  a,,lG ij; bl . . . . .  b lj) 
Crtlzg2(F~,;a~ . . . . .  a~,[G~;b~ . . . . .  b~) for all ~,>~ 

(c) For each ~ in Se, 

Fr ~ C~,m(F~,; ~ ~, .  . ., ~ ,  ~ 1 ~ ;  ~ N, .... M~ ~)  

this ensures that N is itself contained in the circle about ~rx Jl~z which is the 
intersection of the shells with radii 3~r~ N and M2 N. 

It is now possible to discuss the idea of perpendicularity in a cellular 
space, in as much as such a relation exists between a cellor 3~q 2ff2 and any 
cellor/Vl N2 such that ~V~ and ~72 both lie in the same circle about M~ M2. 
Thus the idea of perpendicularity must be qualified by specifying the nature 
of the circle in terms of radii and radius propositions. 

We say that for any N1 and iV2 in C~trt2(F~;al . . . . .  ao, lGl~;bb.. . ,b~),  
Nl N2 is (F~ ;a~ . . . . .  a~,lGl~;b ~ . . . . .  b~)--perpendicular to ~q/l~r2, denoted by 

~1 ~2 _L (F~,;a~ . . . .  , a~[G~;b~ . . . . .  bg)M~ M 2 

Then denoting the brackets above by (AIB), we have/Y2 N~ 1 (A[B)~q AI2 
if and only if N~Nz _L ( A I B ) ~  3~r 2 if and only if N~N2 1 (BIA)h(r2 M~. 

The relation _L (AIB) is left-transitive in the sense that 

PTf~/~2 _L ( A [ B ) 2 ~  - ~  2 and 2~2]~ 3 _ L ( A [ B ) M j M 2 - +  
N, N~ _L (~1~) ~, ~q 

and is right-transitive in the sense that 

-N! -~r2 ]_ ( A ] B ) ~  2~f2 and ~flN2 _L (B[C)d~2./~3 --~ 
~ ,  Kf2 _1_ (AIC)  M ,  M3 

Conversely if we are given the three regions ~/~, 2ff2 and N and we wish to 
construct a cellor at Nwhich is perpendicular to M~ M2, we first look for all 
those brackets (AIB) for which N ~ C~r t~ (A  IB). If(A~ IB3 is such a bracket 
then for any O e C~h ~r,(A~ I B~), NO is a cellor perpendicular to/ff~ 3~t 2 such 
that ~ .L (Al IBm) J~q A~r2. 

Note that symmetry could be introduced into the relation A_ (AIB) [that 
is, for each a and b in ~ and each (AIB) there exists (A'[B') such that 
a _L (A[B)b  .-.-> b _L (A '[B' )a]  only if the idea of parallel displacement is 
introduced when there is some degree of regularity in the structure. 
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